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We report quantum calculations of vibrational states of transN-methyl acetamide (H3C-HNCO-CH3) in
full dimensionality using the code MULTIMODE. In this code, the full potential is represented as a hierarchical
sum ofn-mode potentials in the normal coordinates. All 30 one- and 435 two-mode potentials are included
in the sum, as well as a restricted set of 10 three-mode potentials corresponding to the experimentally probed
amide band. The electronic energies on the variousn-mode grids are obtained using ab initio Møller-Plesset
perturbation theory with a triple-ú quality, correlation-consistent basis set. Convergence tests of the low-
lying vibrational eigenvalues of the amide band show that this limited three-mode representation of the full
potential yields well converged results that are in excellent agreement with experiment. The infrared spectrum
in the region of the amide bands is calculated and also agrees well with experiment.

1. Introduction

Spectroscopic investigation ofN-methyl acetamide (NMA),
which is considered a model for a peptide bond in proteins,
can provide information about secondary structure of proteins
in the gas phase as well as in solution. Numerous infrared (IR)
and Raman experiments have focused on the spectral region
spanned by the three amide bands of NMA,1-8 particularly in
the easily detectable amide I regime that overlaps with the CO
stretch. In liquid water, the CO stretch responds to the presence
of water molecules by forming hydrogen bonds, and the
resulting frequency shift can be used to assess the dynamics of
protein-solvent interactions. Similarly, the amide II and amide
III bands, which overlap with the NH in-plane wagging motion,
can be used to describe the interaction between CO and HN,
which are part of the backbone of a protein. And since the amide
hydrogen can form a bond with the solvent, that is, H2O‚‚‚H-
N, corresponding frequency shifts provide further information
on protein behavior in aqueous solution.

Recent high-level theoretical studies4,9,10 have added new
insight to the simplified, harmonic, or empirical force-field-
based models. Vibrational calculations that go beyond the
harmonic model were reported recently by Gregurick et al.10

This group performed 28 080 electronic energy calculations
using Møller-Plesset perturbation theory (MP2) and a double-
ú-plus-polarization (DZP) basis set on all one- and two-mode
grids in normal coordinates. The vibrational analysis was
performed using the vibrational self-consistent field (VSCF)
method with an MP2 treatment of mode-mode correlation. A
major goal of that work was to compare the ab initio-based
results and those using an empirical force field from AMBER11

with experimental energies from rare-gas matrix data. Although
the two sets of vibrational calculations were roughly at the same
level of agreement with experiment, the authors argued that the
ab initio approach was superior to the empirical force field. The
“ab initio” approach showed differences of 18-43 cm-1 with
experiment for the three amide bands and even larger differences
with experiment for other bands.

Theoretical studies of the effect of solvation on the amide
bands have also been undertaken. Ab initio molecular dynamics
simulations ofN-methyl acetamide have been carried out in gas
phase and explicit solvent.12-15 Several groups, including
Gaigeot et al.13 and Mantz et al.,14 have used Car-Parrinello
density functional (CP/DFT) molecular dynamics16 to study
solvation effects and infrared spectroscopy of the amide bands.
The simulated spectra had the correct qualitative shapes, as com-
pared to the experiment; however, the positions of some of the
dominant peaks, for example, the CO stretch, were found to be
off from the experiment by up to 100 cm-1.13 These discrep-
ancies are likely due to the small electron basis sets, for example,
a nonpolarized double-ú quality valence basis set, used in these
CP/DFT calculations. These calculations may describe well the
geometry of the complex but fail to produce the correct curvature
of the potential surface, even in the vicinity of the minimum.

An interesting step to improve the ab initio treatment of the
amide modes and also to account for solvent effects was taken
by Hayashi et al.15 They developed a DFT-based force field
for the five modes, including the three amide modes, plus two
other “A” modes that have frequencies within the amide band
spectral region. They modeled the effect of water by performing
extensive MD runs in a periodic box using a force field. The
electrostatic field due to the water molecules was fitted to a
polynomial in the Cartesian coordinates of NMA. The potential
energy of NMA in the presence of the solvent was then re-
created via a fifth-order Taylor series with the expansion
coefficients as parameters of the electric field. These electronic
structure calculations were done at the level of DFT. The
calculated gas-phase frequencies for the entire amide band
matched the experiment very well, and the predicted red shift
of amide I due to solvation in water came out very close to the
measured value. It is important to stress that such good
agreement was achieved despite the reduced dimensionality
treatment of the system; to note, only the five in-plane
vibrational modes, spanning the entire amide band region, were
treated explicitly in the quantum dynamical calculation.

In this paper, we report a full dimensional ab initio approach
to the vibrational energies of NMA and the IR spectrum in the* Corresponding author. E-mail akaledi@emory.edu.
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region of the amide bands that goes beyond what was reported
previously both in terms of the level of ab initio treatment of
the electronic energies and the level of mode coupling. Clearly,
a straightforward, full-dimensional (30 degree-of-freedom),
global potential energy surface for NMA is not a realistic goal
at present. We take a different approach, which nevertheless
allows us to perform vibrational calculations in full dimension-
ality, using MULTIMODE.17 The key aspect of this approach
is then-mode representation of the potential,18,19which permits
a “direct” evaluation of the ab initio electronic energies on
n-mode grids. With these potential grids in hand, MULTIMODE
then calculates vibrational eigenvalues and eigenfunctions of
the exact vibrational Hamiltonian given by Watson.20 We
describe this approach in the next section, and in Section 3, we
present our results and comparison with experiment. A summary
and directions for future research are given in Section 4.

2. Evaluation and Fitting of the NMA Potential

The vibrational approach taking in the code MULTIMODE
is based on normal mode coordinates. In the case of NMA, there
are 30 normal modes, and in principle, the potential depends
on all of these coordinates. An approach to deal with this very
high dimensionality is to use a hierarchicaln-mode representa-
tion (n MR) of the potential. In normal coordinates, this is given
by18

whereV(1)(Qi) is the one-mode potential energy along displace-
mentQi, while Qj*i ) 0 for all j. This necessarily implies that
the heretofore defined intrinsic potentialV(2)(Qi, Qj*i) is coupling
between modesi and j, which vanishes whenQi ) 0 or Qj )
0, that is,V(2)(0, Qj) = V(2)(Qi,0). In general,V(m)(‚‚‚, 0, ‚‚‚) ) 0
is true for any intrinsic potential. Thus, an intrinsic two-mode
potential is defined asV(2)(Qi, Qj) ) V(2)(Qi, Qj) - V(1)(Qi) -
V(1)(Qj), where V(2)(Qi, Qj) is the full two-mode potential.
Similarly, a three-mode intrinsic potential is defined asV(3)(Qi,
Qj, Qk) ) V(3)(Qi, Qj, Qk) - V(2)(Qi, Qj) - V(2)(Qi, Qk) - V(2)(Qj,
Qk) - V(1)(Qi) - V(1)(Qj) - V(1)(Qk), and so on.

This representation of the potential has been shown to yield
essentially exact vibrational energies in full-dimensionality for
semirigid molecules, withn significantly less than the total
number of vibrational modes. A recent example is for nine-
mode CH4,19,21-23 in which a 5-mode representation of the
potential was sufficient to yield energies to within several tenths
of a wave number for all states 4600 cm-1 above the zero-
point energy. Another very relevant advantage of then-mode
representation of the potential is that a “direct” calculation of
ab initio energies on the relevantn-mode grids for the intrinsic
potentials is all that is needed to implement a calculation. This
technique using at least three-mode coupling has been performed
by us,24 Yagi et al.,25 and Rauhut26 with and without interpola-
tion. Gerber and co-workers have done extensive similar
calculations using direct calculations on two-mode grids.27 The
latter group used this approach to calculate the fundamental
transition frequencies of NMA at a 2MR level of theory, as
discussed above.10

In the present application to NMA, this direct approach is
clearly necessary; however, to go beyond the two-mode ap-
proach of Gregurick et al.,10 by treating all 30 modes at the
same level ofn-mode coupling would not be feasible. Specif-
ically, there are 435 two-mode intrinsic potentials and 4060

three-mode intrinsic potentials. So clearly, even if effective
interpolation can be performed on grids for these potentials such
that, say, 125 points are sufficient for each three-mode potential,
that would still amount to 507 500 ab initio energies. Obviously,
this would not be a feasible calculation. In response to this, we
have modified MULTIMODE to allow for a flexible choice of
modes to describe different levels of mode coupling among
different groups of modes. In the present case, we treat the five
amide modes (described in detail in the next section) up to three-
mode coupling and the remaining 25 modes up to two-mode
coupling. This reduces the number of three-mode grids drasti-
cally to only 10, and thus, the number of ab initio energies
needed is on the order of 1000 for these grids.

To find the optimal electronic structure method that is both
practical and relatively accurate, we tested a variety of size-
extensive methods, including MP2, MP3, MP4, QCISD, CCSD,
and (MR)ACPF, with triple-ú quality basis sets. A simple
estimate of the least number of single point energy calculations
(without the gradient) needed to map out the 30-dimensional
surface easily ruled out the much more expensive nonlinear,
iterative methods, which can be used as a benchmark for testing
the accuracy of perturbation theory and for addressing possible
problems of apparent multireference character of the electronic
wavefunction, that is, a superposition of the neutral and
zwitterionic configurations in the presence of a polar solvent.15

Since our goal is to create a realistic description of the potential
surface, that is, to go beyond the minimal one- and two-mode
representation, the method of choice appears to be MP2 with a
suitably chosen correlation consistent basis set. Exploratory fine-
tuning of the basis set versus computational time per calculation
allowed us to add diffuses andp functions to cc-pVTZ on O
and N. This flexibility improves description of the long range
interaction between O and the H atoms from the methyl groups,
as well as adds diffuse orbital character needed for possible
excess negative charge accumulation and charge fluctuation
between O and N. This basis is referred to as aug-cc-pVTZ.

To construct the grids, we first optimized the geometry to
the global minimum with very tight convergence criteria and
performed a frequency calculation, that is, calculation and
diagonalization of the second derivative matrix. We used
Gaussian 9828 with the semidirect option for MP2, to avoid
memory problems, and with a numerical option for the
frequency calculation, which avoided a direct construction of
the Hessian by way of central-difference gradient differentiation
with a 0.001 Å step. These precautions ensured a precisely
orthogonal set of Hessian eigenvectors that also retained theCs

point group symmetry elements for all atoms. Such care for
detail is usually unnecessary in a simple visual analysis normal
mode calculation, but it is crucial in our case for the construction
of an exactCs-symmetry adapted vibrational Hamiltonian. The
Cartesian normal mode eigenvectors,{uba}i, for atomsa ) 1,
..., 12 and vibrational modesi ) 1, ..., 30 were then used to
define Cartesian displacements for the atoms from the equilib-
rium geometry, for example,∆rba,i ) ma

-1/2Qiuba,i whereQi is
the displacement along modei, andma is mass of atoma. All
subsequent single point energy calculations were done with
MOLPRO 2006.129 using the integral direct MP2 program.30

Our usual strategy in quantum vibrational calculations is to
first define the range for each vibrational mode, namely, to find
min [Qi] and max [Qi]. These values are determined by applying
an energy thresholdEth. In the present case, we useEth ) 35 000
cm-1, common for all modes. We used a modest 10 grid points
per mode, which resulted in∼200 one-mode calculations,
exploiting theCs symmetry. Grids varied for two-mode scans

V ) ∑
i

V(1)(Qi) + ∑
i<j

V(2)(Qi, Qj) + ∑
i<j<k

V(3)(Qi, Qj, Qk) +

‚‚‚ (1)
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between 8 and 9, depending on the symmetry and the shape of
the potential; thus, approximately 9× 8 × 30× 29/4) 15 660
two-mode calculations were done. Selected three-mode poten-
tials were generated on the same grids as the two-mode
potentials, resulting in an additional 10 000 points. Overall, the
computational effort can be roughly converted to a month of
CPU time on a 10-processor cluster and assuming an average
of 20 min per energy calculation for MP2/aug-cc-pVTZ for the
two possible symmetries.

The one-, two-, and three-mode intrinsic potentials were then
least-squares fit using a polynomial fitting basis of the form
(tanh(γiQi))n, whereγi ≡ 1/max [|Qi|]. Given the symmetry of
NMA, which possesses a plane of reflection, theA′′ vibrational
modes are defined on one-half of their range, and only the even
polynomial powers are retained in the fits. It is further assumed
that the gradient vanishes exactly at the equilibrium where the
potential is also set to zero. The highest power for each potential
was determined to minimize both the rms error and the number
of terms itself, to keep the polynomial as low order as possible.
This was achieved by setting a threshold such that the lowest
order polynomial with the rms smaller than a preset threshold
(we used 1 cm-1) was selected as best fit. All the one-mode
fits and most of the two-mode fits were well within the 1 cm-1

rms threshold; however, several two- and three-mode fits had
slightly larger rms errors, typically between 3 and 5 cm-1.
Finally, the polynomial expansion coefficientsan

(i), ani,nj

(i,j) , and
ani,nj,nk

(i,j,k) , along with the normal mode eigenvectors, harmonic
frequencies, atomic masses, and the equilibrium geometry were
used as input for MULTIMODE.

3. Calculation of Vibrational Energies and Comparison
with Experiment

Vibrational energy levels are obtained as eigenvalues of the
Watson Hamiltonian with the potential shown in eq 1; namely,

wheren is the eigenvalue/eigenfunction index, andQ is the
30-dimensional vector of normal coordinates. The eigenfunctions
Ψn

CI are linear combinations of direct products of one-dimen-
sional basis functionsøl(Qj), which are the solutions of the
corresponding VSCF equations.18,19The one-dimensional basis
is first made up of 7-9 harmonic oscillator functions, which
are then contracted to 5-7 quadrature-optimized functions.
These quadrature-optimized functions form the one-dimensional
basis{øl} for the VSCF calculation. The overall procedure is,
thus, to first solve the coupled SCF equations, one for each
normal coordinate until convergence of the lowest energy level
is reached, and second, to construct a configuration interaction
(CI) matrix using the orthogonal virtual basis of the VSCF
Hamiltonian and diagonalize it, yielding the final results,{En

CI,
Ψn

CI}. This approach is referred to as the vibrational CI.18,19

The size of the CI calculation is substantially reduced compared
to nonoptimized, direct harmonic basis calculation. In addition,
the convergence of the fundamental excitations with respect to
CI basis size is usually achieved with only a few quadrature-
optimized basis functions per mode.

Visual inspection of the two lowest frequency modes revealed
two quasi-free CH3 rotations: one rotor,Q1, having a near-
zero frequency (14 cm-1) and attached to the amide nitrogen,
and the other,Q2, with a 50 cm-1 frequency located on the
amide carbon. The small harmonic frequencies have little
significance because the potential along these modes is expected

to be dominated by the quartic powers. More importantly, these
two torsional modes do mix with the associated symmetric CH
stretchesQ24 andQ25 because rectilinear normal modes are a
poor description of curvilinear torsions. Although the barriers
to both CH3 rotations are less than 1 kcal/mol, the potentials in
the (Q1, Q24) and (Q2, Q25) planes are very flat along the CH3

rotation coordinate. For an illustration, we refer to Figure 1.
The location of the rotational transition state is correctly shown
in either of the upper corners of the full potential in Figure 1a,
but it is completely missing in the uncoupled potential in Figure
1b. The rigorous treatment of the large amplitude motion of
the two methyl rotors is beyond the scope of a standard normal
mode Hamiltonian, and we dealt with this, as usual, by not
allowing high-energy excitations in these modes in the CI
calculation. Specifically, the excitations in these and the next
two lowest-frequency modes were restricted to a single quantum.
(It is perhaps also worth noting that, in the present case, this
approach is consistent with the expectation that in the condensed
phase, the CH3 rotations are hindered due to their interactions
with the solvent molecules.)

Results of the vibrational CI calculations, which are reported
as energies relative to the zero point level, are summarized in
Tables 1-3. The main bands of interest are the fiveA′ modes
(which we will refer to as the “amide modes”) that span the
amide band region and that were the ones described in the recent
work of Hayashi et al.15 In our calculations, these are modes
12, 15, 22, 23, and 30. They describe the in-plane vibrations of
the HNCO group and, thus, contain direct information about
the dynamics of the peptide bond. So-called amide I, II, and III
bands correspond to the fundamental of modes 23, 22, and 15,
respectively. Figure 2 shows the normal mode vectors of these
five modes.

We first examine convergence of these five band frequencies
with respect to mode coupling (Table 1). This is useful for
determining the importance of other modes, which we refer to
loosely as the “bath modes”. The strictly harmonic frequencies
are also included as a “baseline”. Consider first the uncoupled
Hamiltonian but with the anharmonic terms included, that is,
the 1MR level of theory. As seen, relative to the harmonic
values, there are insignificant shifts in the first four fundamentals
listed, but the NH stretch is red-shifted by 136 cm-1. Such a
dramatic difference can be rationalized by analyzing the shapes
of the potentials. The five one-mode potentials are shown in
Figure 3. At low energies, up to 5000 cm-1, the NH stretch is
already highly asymmetric, whereas the other four modes are
dominated by the quadratic power. Inspection of the fitting
coefficients confirms the visual analysis.

Figure 1. A contour plot of the potential alongN-methyl rotation
coordinateγ1Q1 (horizontal axis) andN-methyl breathing modeγ24Q24

(vertical axis). The two plots illustrate the difference between the full
potential (a) and the uncoupled potential (b).

HvibΨn
CI(Q) ) En

CI Ψn
CI(Q) (2)
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Coupling the five modes among themselves with two-mode
potentials while keeping all the other modes at 1MR level is
the lowest order of amide mode correlation, referred to as 2MR-
A. Overall, the corrections are small relative to the 1MR
calculations. The effect of the bath modes is probed by coupling
them to the amide modes via the two-mode amide-bath
potentials (2MR-A2 level of theory); the bath modes are not
coupled to each other in this representation. The coupling
produces significant shifts relative to the 2MR-A results. The
final 2MR calculation is where all modes are coupled at this
level. As seen, there are only small shifts for relative to the
2MR-A2 ones, suggesting that the bath-bath coupling is not
important for calculating the amide frequencies, at least at the
2MR level of theory. (A more complete set of 2MR results is
shown in Table 2 and Figure 4.)

Finally, consider the effect of including three-mode coupling
among the amide modes (3MR-A). With the exception of the
NH stretch, the changes are small relative to the 2MR and 2MR-
A2 calculations. Overall, the agreement with the available
experimental data is remarkably good for the fundamental
frequencies, and it is interesting and, we believe, significant
that the level of agreement with experiment increases as the
level of mode coupling increases. In addition, the rapid
convergence of the amide band frequencies is an encouraging
sign for applying the present formalism to generic system-bath

problems for which it may be desirable to treat a large number
of bath modes explicitly at the quantum level.

Excitation energies of overtones and mode combinations are
shown in Table 3. Wherever possible, comparison to experi-
mental data is made. As is the case for the fundamental
frequencies, the agreement with experiment is excellent, and
in most instances, the frequency is overestimated rather than
underestimated.

We constructed an approximate 0 K spectrum using the
fundamental transition frequencies from the 3MR-A calculation
and the intensities from the double harmonic MP2 calculation,
that is, quadratic potential and linear dipole. To make a direct
comparison with experiment,5 the peaks were broadened using
Gaussian functions with 20 cm-1 widths. The amide I, II, and
III features can be easily identified around 1200-1300, 1400-
1500, and 1700-1900 cm-1 regions, shown in Figure 5. This
calculated spectrum is in very good agreement with the one
reported by Kubelka and Keiderling.5 The increasing intensity
of the amide bands with the frequency is reproduced well, and
the region of weak absorption to the red of amide II is present
in the calculated spectrum. The main discrepancy is the
overestimated intensity for amide II, which is attributed to the
double harmonic approximation used in the calculation. When
the intensities of all peaks are scaled with the squared VCI
coefficient of the leading configuration, which is∼0.92 for
amides II and III, and∼0.99 for the other fundamentals, the
spectrum is improved (the dashed line in Figure 5a). Further
improvement can be achieved if the intensities are computed at
the 2MR or 3MR-A level with an exact dipole. The other point
of discrepancy is the doublet structure in amide I. Experimen-
tally, the split is identified as being due to rotational transitions;
namely, a B-type doublet, which could be significant at∼373
K.5 Since the calculated spectrum was done for a rotationless
NMA at 0 K, the doublet structure is missing.

In the presence of solvent, the spectral features will shift,
and the lines will broaden further due to solute-solvent
interactions. This was discussed in detail by Hayashi et al.,15

who predicted substantial shifts for amides I, II, and A on the

TABLE 1: Convergence of the Amide-Band Fundamental Frequencies (in cm-1) for Various Levels of Mode Coupling in the
Potential (as Described in the Text) Computed with MP2/aug-cc-pVTZ

mode character H.O. 1MRa 2MR-Ab 2MR-A2b 2MRc 3MR-Ad exptle

ν12 NH + CH3(N) 1119 1120 1122 1106 1103 1099 1089f

ν15 NH + CH3(C) 1290 1296 1285 1258 1256 1253 1258
ν22 C-N 1561 1565 1555 1514 1516 1519 1500
ν23 C-O 1749 1743 1747 1726 1727 1727 1728
ν30 N-H 3703 3567 3552 3547 3531 3544 3498

a Size of CI matrix blocks: 118 (A′) and 33 (A′′) b 711 and 331 c 777 and 355 d 791 and 331 e Experimental values are taken from ref 2.
f Experimental value is taken from ref 1.

TABLE 2: Fundamental Transition Frequencies for the ‘Bath’ Modes of NMA at 2MR Level of Theory

mode character H.O. 2MR exptla mode character H.O. 2MR exptla

ν1(A′′) CH3(N) rot. 0 438 ν16(A′) CH3(C) ubmr. 1402 1388 1370
ν2(A′′) CH3(C) rot. 50 375 ν17(A′) CH3(N) ubmr. 1460 1442 1419
ν3(A′′) C(+)N(-)C(+) 151 145 ν18(A′′) CH3 (C) a-bend 1487 1467 1432
ν4(A′) CO rock 259 282 279 ν19(A′′) CH3 (N) a-bend 1494 1483 1446
ν5(A′′) NH wag. 347 559 ν20(A′) CH3 (C) s-bend 1498 1481 1446
ν6(A′) CO in-plane 423 438 439 ν21(A′) CH3 (N) s-bend 1529 1505 1472
ν7(A′) CC str. 630 633 658 ν24(A′) CH3 (N) brth. 3088 2940 2958
ν8(A′′) CO out-plane 633 685 626 ν25 (A′) CH3 (C) brth. 3091 2983 2915
ν9(A′) NCO bend 883 886 857 ν26(A′′) CH3 (N) a-str. 3165 2995 2973
ν10(A′) CH3 (C) rock 1003 1005 990 ν27(A′) CH3 (C) a-str. 3188 3043 3008
ν11(A′′) CH3 (C) twist 1058 1061 1037 ν28(A′′) CH3 (C) a-str. 3188 3025 3008
ν13(A′′) CH3 (N) twist 1169 1167 ν29(A′) CH3 (N) a-str. 3197 3056 2978
ν14(A′) CH3 (N) rock 1195 1199 1181

a Experimental values are taken from ref 1.

TABLE 3: Overtones and Combinations of NMA’s Amide
Band (cm-1)a

state H.O. 3MR-A exptlb state H.O. 3MR-A exptlb

2ν12 2238 2192 3ν12 3357 3282
ν12 + ν15 2409 2359 2ν23 3499 3433 3440
2ν15 2581 2503 2504 ν12 + 2ν15 3700 3619
ν12 + ν22 2679 2626 3ν15 3871 3749
ν15 + ν22 2851 2773 2758 ν12 + ν30 4816 4583
ν12 + ν23 2868 2837 ν15 + ν30 4993 4738
ν15 + ν23 3040 2990 2971 ν22 + ν30 5263 5006
2ν22 3132 3030 ν23 + ν30 5452 5209
ν22 + ν23 3310 3257 2ν30 7406 6871

a The 3MR-A zero point level is 22557 cm-1. b Experimental values
are taken from ref 2.
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basis of coupled quantum-classical simulations, consistent with
the experiment. Similarly, ab initio MD calculations by Bour
and Keiderling31 showed big shifts of the amide frequencies in
water.

4. Summary and Future Work

We reported a calculation of vibrational energies ofN-methyl
acetamide using the code MULTIMODE, which makes use of
n-mode representations of the potential in normal coordinates
and with an exact vibrational Hamiltonian, inclusive of full
vibration-rotation coupling. The potential was obtained as fits
to electronic energies on the variousn-mode grids, obtained
with MP2 theory and a correlation consistent “pVTZ” basis set
with the addition of diffusesandp functions for O and N atoms.
The focus of the calculations was on five modes that span the
region of the amide bands. All 30 vibrational modes were
considered; however, by using partitions of small groups of
coupled modes, up to three for the five “amide” modes and
only two for the other modes, we demonstrated good conver-
gence of the vibrational energies of the amide modes. Agreement

with experimental energies for the three amide bands was
obtained with a very good level of accuracy, that is, a mean
absolute deviation of 16 cm-1 for 3MR-A, as compared to a
mean absolute deviation 70 cm-1 for the harmonic approxima-
tion. The infrared spectrum was also calculated and compared
to experiment, where again, very good agreement was found.

The present calculations showed rapid convergence at a fairly
low level of mode-coupling among the amide modes and an
even lower level of coupling for the remaining 15 “bath modes”.
This is encouraging for further studies that are planned to include
explicit microsolvation.

As was suggested in previous studies,4,15 the energies and
wave functions for a microsolvated system can be calculated.
The NMA-water interactions can be modeled reasonably well
by force fields, as has been done recently.12,15,31 Finally, the
orthogonal states{Ψn

CI} can serve as a basis for expansion of a
wavepacket evolving in time. We note that similar calculations
are being done by other groups.34 This is a subject of ongoing
work that will be presented in a future publication.
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